Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging.

نویسندگان

  • G Fibich
  • A Hammer
  • G Gannot
  • A Gandjbakhche
  • I Gannot
چکیده

BACKGROUND AND OBJECTIVES One of the methods to detect and localize tumors in tissue is to use fluorophore conjugated specific antibodies as tumor surface markers. The goals of this study are to understand and quantify the pharmacokinetics of fluorophore conjugated antibodies in the vicinity of a tumor. This study concludes another stage of the development of a non-invasive fluorescenated antibody-based technique for imaging and localization of tumors in vivo. STUDY DESIGN/MATERIALS AND METHODS A mathematical model of the pharmacokinetics of fluorophore conjugated antibodies in the vicinity of a tumor was developed based on histological staining experiments. We present the model equations of concentrations of antibodies and free binding sites. We also present a powerful simulation tool that we developed to simulate the imaging process. We analyzed the model and studied the effects of various independent parameters on the imaging result. These parameters included initial volume of markers (injected volume), total number of binding sites, tumor size, binding and dissociation rate constants, and the diffusion coefficient. We present the relations needed between these parameters in order to optimize the imaging results. RESULTS AND CONCLUSIONS A powerful and accurate tool was developed which may assist in optimizing the imaging system results by setting the injection volume and concentration of fluorophore conjugated antibodies in tissue and approximating the time interval where maximum specific binding occurs and the tumor can be imaged.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

In vivo subcellular imaging of tumors in mouse models using a fluorophore-conjugated anti-carcinoembryonic antigen antibody in two-photon excitation microscopy

Recently, there has been growing interest in applying fluorescence imaging techniques to the study of various disease processes and complex biological phenomena in vivo. To apply these methods to clinical settings, several groups have developed protocols for fluorescence imaging using antibodies against tumor markers conjugated to fluorescent substances. Although these probes have been useful i...

متن کامل

A New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs

Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2005